Похідні таблиці з квадратним коренем. Похідна статечної функції (ступеня та коріння)

Операція відшукання похідної називається диференціюванням.

В результаті вирішення завдань про відшукання похідних у найпростіших (і не дуже простих) функцій визначення похідної як межі відношення прирощення до прирощення аргументу з'явилися таблиця похідних і точно визначені правила диференціювання. Першими на ниві знаходження похідних попрацювали Ісаак Ньютон (1643-1727) та Готфрід Вільгельм Лейбніц (1646-1716).

Тому в наш час, щоб знайти похідну будь-якої функції, не треба обчислювати згадану вище межу відношення збільшення функції до збільшення аргументу, а потрібно лише скористатися таблицею похідних та правилами диференціювання. Для знаходження похідної підходить наступний алгоритм.

Щоб знайти похідну, треба вираз під знаком штриха розібрати на складові прості функціїта визначити, якими діями (твір, сума, приватна)пов'язані ці функції. Далі похідні елементарних функцій знаходимо у таблиці похідних, а формули похідних твору, суми та частки - у правилах диференціювання. Таблиця похідних та правила диференціювання дані після перших двох прикладів.

приклад 1.Знайти похідну функції

Рішення. З правил диференціювання з'ясовуємо, що похідна суми функцій є сума похідних функцій, тобто.

З таблиці похідних з'ясовуємо, що похідна "ікса" дорівнює одиниці, а похідна синуса - косінус. Підставляємо ці значення у суму похідних і знаходимо необхідну умовою завдання похідну:

приклад 2.Знайти похідну функції

Рішення. Диференціюємо як похідну суми, в якій другий доданок з постійним множником, його можна винести за знак похідної:

Якщо поки що виникають питання, звідки береться, вони, як правило, прояснюються після ознайомлення з таблицею похідних та найпростішими правилами диференціювання. До них ми і переходимо зараз.

Таблиця похідних простих функцій

1. Похідна константи (числа). Будь-якого числа (1, 2, 5, 200 ...), яке є у виразі функції. Завжди дорівнює нулю. Це дуже важливо пам'ятати, тому що потрібно дуже часто
2. Похідна незалежною змінною. Найчастіше "ікса". Завжди дорівнює одиниці. Це також важливо запам'ятати надовго
3. Похідна ступеня. У ступінь під час вирішення завдань необхідно перетворювати неквадратні коріння.
4. Похідна змінної у ступені -1
5. Похідна квадратного кореня
6. Похідна синуса
7. Похідна косинуса
8. Похідна тангенса
9. Похідна котангенсу
10. Похідна арксинуса
11. Похідна арккосинусу
12. Похідна арктангенса
13. Похідна арккотангенса
14. Похідна натурального логарифму
15. Похідна логарифмічна функція
16. Похідна експоненти
17. Похідна показової функції

Правила диференціювання

1. Похідна суми чи різниці
2. Похідна твори
2a. Похідна вирази, помноженого на постійний множник
3. Похідна приватного
4. Похідна складної функції

Правило 1.Якщо функції

диференційовані в деякій точці, то в тій же точці диференційовані і функції

причому

тобто. похідна суми алгебраїчної функцій дорівнює сумі алгебри похідних цих функцій.

Слідство. Якщо дві функції, що диференціюються, відрізняються на постійний доданок, то їх похідні рівні, тобто.

Правило 2Якщо функції

диференційовані в деякій точці, то в тій же точці диференційовано та їх добуток

причому

тобто. похідна твори двох функцій дорівнює сумі творів кожної з цих функцій похідну інший.

Наслідок 1. Постійний множник можна виносити за знак похідної:

Наслідок 2. Похідна твори декількох функцій, що диференціюються, дорівнює сумі творів похідної кожного з співмножників на всі інші.

Наприклад, для трьох множників:

Правило 3Якщо функції

диференційовані в деякій точці і , то в цій точці диференційовано та їх приватнеu/v , причому

тобто. похідна приватного двох функцій дорівнює дробу, чисельник якого є різниця творів знаменника на похідну чисельника і чисельника на похідну знаменника, а знаменник є квадрат колишнього чисельника.

Де що шукати на інших сторінках

При знаходженні похідної твори і частки у реальних завданнях завжди потрібно застосовувати відразу кілька правил диференціювання, тому більше прикладів на ці похідні - у статті"Виробничі твори та приватні функції".

Зауваження.Слід не плутати константу (тобто число) як доданок у сумі і як постійний множник! У разі доданку її похідна дорівнює нулю, а разі постійного множника вона виноситься за знак похідних. Це типова помилка, яка зустрічається на початковому етапі вивчення похідних, але в міру вирішення вже кількох одно-двоскладових прикладів середній студент цієї помилки вже не робить.

А якщо при диференціюванні твору чи приватного у вас з'явився доданок u"v, в котрому u- число, наприклад, 2 або 5, тобто константа, то похідна цього числа дорівнюватиме нулю і, отже, все доданок буде дорівнює нулю (такий випадок розібраний у прикладі 10).

Інша часта помилка- механічне рішення похідної складної функції як похідної простий функції. Тому похідної складної функціїприсвячено окрему статтю. Але спочатку вчитимемося знаходити похідні простих функцій.

По ходу не обійтися без перетворень виразів. Для цього може знадобитися відкрити у нових вікнах посібники Дії зі ступенями та коріннямі Дії з дробами .

Якщо Ви шукаєте рішення похідних дробів зі ступенями та корінням, тобто, коли функція має вигляд начебто , то слідуйте на заняття "Похідна суми дробів зі ступенями та корінням".

Якщо ж перед Вами завдання начебто , то Вам на заняття "Виробні простих тригонометричних функцій".

Покрокові приклади - як знайти похідну

приклад 3.Знайти похідну функції

Рішення. Визначаємо частини виразу функції: весь вираз представляє твір, яке співмножники - суми, у другий у тому числі одне з доданків містить постійний множник. Застосовуємо правило диференціювання твору: похідна твори двох функцій дорівнює сумі творів кожної з цих функцій на похідну інший:

Далі застосовуємо правило диференціювання суми: похідна суми алгебраїчної функцій дорівнює сумі алгебри похідних цих функцій. У нашому випадку в кожній сумі другий доданок зі знаком мінус. У кожній сумі бачимо і незалежну змінну, похідна якої дорівнює одиниці, і константу (число), похідна якої дорівнює нулю. Отже, "ікс" у нас перетворюється на одиницю, а мінус 5 - на нуль. У другому виразі "ікс" помножено на 2, так що двійку множимо на ту ж одиницю як похідну "ікса". Отримуємо такі значення похідних:

Підставляємо знайдені похідні у суму творів і отримуємо необхідну умовою завдання похідну всієї функції:

А перевірити розв'язання задачі на похідну можна на .

приклад 4.Знайти похідну функції

Рішення. Від нас потрібно знайти похідну приватного. Застосовуємо формулу диференціювання частки: похідна частки двох функцій дорівнює дробу, чисельник якого є різниця творів знаменника на похідну чисельника і чисельника на похідну знаменника, а знаменник є квадрат колишнього чисельника. Отримуємо:

Похідну співмножників у чисельнику ми вже знайшли в прикладі 2. Не забудемо також, що твір, що є другим співмножником у чисельнику в поточному прикладі береться зі знаком мінус:

Якщо Ви шукаєте вирішення таких завдань, в яких треба знайти похідну функції, де суцільне нагромадження коренів та ступенів, як, наприклад, , то ласкаво просимо на заняття "Виробна суми дробів зі ступенями і корінням" .

Якщо ж Вам потрібно дізнатися більше про похідні синуси, косінуси, тангенси та інші тригонометричні функції, тобто, коли функція має вигляд начебто , то Вам на урок "Виробні простих тригонометричних функцій" .

Приклад 5.Знайти похідну функції

Рішення. У цій функції бачимо твір, один із співмножників яких - квадратний корінь із незалежної змінної, з похідною якого ми ознайомились у таблиці похідних. За правилом диференціювання твору та табличного значення похідної квадратного кореня отримуємо:

Перевірити рішення задачі на похідну можна на калькуляторі похідних онлайн .

Приклад 6.Знайти похідну функції

Рішення. У цій функції бачимо приватне, ділене якого - квадратний корінь із незалежної змінної. За правилом диференціювання приватного, яке ми повторили і застосували в прикладі 4, та табличного значення похідної квадратного кореня отримуємо:

Щоб позбутися дробу в чисельнику, множимо чисельник і знаменник на .

Інструкція

Перед тим як знаходити похідну кореня, зверніть увагу на інші функції, присутні у прикладі, що вирішується. Якщо задача має багато підкорених виразів, то скористайтеся наступним правилом знаходження похідної квадратного кореня:

(√х)" = 1 / 2√х.

А для знаходження похідної кубічного кореня застосуйте формулу:

(³√х)" = 1 / 3(³√х)²,

де через ?х позначений кубічний корінь з х.

Якщо , призначений для диференціювання, зустрічається змінна в дробових , то переведіть кореня в статечну функцію з відповідним показником. Для квадратного кореня це буде ступінь ½, а для кубічного кореня – ⅓:

√х = х ^ ½,
?х = x ^ ⅓,

де позначає зведення в ступінь.

Для знаходження похідної статечної функції взагалі і х^½, x^⅓, зокрема, скористайтеся наступним правилом:

(х ^ n) "= n * x ^ (n-1).

Для похідної кореня із цього співвідношення випливає:

(х^½)" = ½ x ^ (-½) і
(x^⅓)" = ⅓ x ^ (-⅔).

Продиференціювавши все, уважно подивіться інші частини прикладу. Якщо у відповіді у вас вийшов дуже громіздкий вираз, то, напевно, його можна спростити. Більшість шкільних прикладів складено таким чином, щоб у результаті вийшло невелике чи компактне вираз.

У багатьох завданнях на перебування похідної, коріння (квадратні та кубічні) зустрічаються разом з іншими функціями. Щоб знайти похідне коріння в цьому випадку, застосовуйте такі правила:
похідна константи (постійного числа, C) дорівнює нулю: C" = 0;
постійний множник виноситься за знак похідної: (k * f) "= k * (f)" (f - довільна функція);
похідна суми кількох функцій дорівнює сумі похідних: (f + g) "= (f)" + (g)";
похідна твори двох функцій дорівнює ... ні, не твору похідних, а наступного виразу: (fg)" = (f)"g + f (g)";
похідна приватного також дорівнює не приватному похідних, а знаходиться згідно з наступним правилом: (f/g)" = ((f)"g – f(g)") / g².

Зверніть увагу

На цій сторінці ви зможете обчислювати похідну функцію онлайн з отриманням докладного рішення задачі. Рішення похідних функцій здійснюється з використанням тих правил диференціювання, які студенти вивчають у курсі математичного аналізу в інституті. Для того, щоб знайти похідну функцію потрібно в полі "Функція" ввести функцію для диференціювання згідно з правилами введення даних.

Корисна порада

Похідної функції називається межа відношення збільшення функції до збільшення аргументу, коли збільшення аргументу прагне до нуля: Математичний зміст цього визначення зрозуміти не дуже просто, оскільки в шкільному курсі алгебри поняття межі функції або не вивчають зовсім, або вивчають дуже поверхово. Але для того, щоб навчитися знаходити похідні різних функцій, це не обов'язково.

Джерела:

  • похідна корінь з ікс
  1. Загальний випадок формули похідного кореня довільного ступеня- дріб, у чисельнику якої одиниця, а в знаменнику число, рівне ступеня кореня, для якого обчислювалася похідна, помножена на корінь такого ж ступеня, підкорене вираз якого - змінна у ступеню кореня, для якого обчислювалася похідна, зменшеною на одиницю
  2. Похідна квадратного кореня- є окремим випадком попередньої формули. Похідна квадратного кореня з x- це дріб, чисельник якого дорівнює одиниці, а знаменник - двійка, помножена на квадратний корінь х
  3. Похідна кубічного кореня, також окремий випадок загальної формули. Похідна кубічного кореня - це одиниця, поділена на три кубічні корені з ікс квадрат.

Нижче наведені перетворення, що пояснюють, чому формули знаходження похідної квадратного та кубічного кореня саме такі, як наведені на малюнку.

Зрозуміло, дані формули можна взагалі не запам'ятовувати, якщо взяти до уваги, що вилучення кореня похідного ступеня - це те саме, що зведення в ступінь дробу, знаменник якого дорівнює тому ж ступеню. Тоді знаходження похідної кореня зводиться до застосування формули знаходження похідного ступеня відповідного дробу.

Похідна змінною під квадратним коренем

(√x)" = 1 / (2√x)або 1/2 х -1/2


Пояснення:
(√x)" = (х 1/2)"

Квадратний корінь - це точно та сама дія, що і зведення в ступінь 1/2,отже для знаходження похідної кореня можна застосувати формулу з правила знаходження похідної від змінної довільною мірою:

(х 1/2)" = 1/2 х -1/2 = 1 / (2√х)

Похідна кубічного кореня (похідна кореня третього ступеня)

Похідна кубічного кореня знаходиться точно за таким же принципом, як і квадратного.

Уявимо кубічний корінь як ступінь 1/3 і знайдемо похідну по загальним правиламдиференціювання. Коротку формулу можна подивитися на зображенні вище, а нижче розписано пояснення, чому саме так.

Ступінь -2/3 виходить внаслідок віднімання одиниці з 1/3

Функції складного вигляду не завжди підходять під визначення складної функції. Якщо є функція виду y = sin x - (2 - 3) · r c t g x x 5 7 x 10 - 17 x 3 + x - 11, то її не можна вважати складною на відміну від y = sin 2 x.

Ця стаття покаже поняття складної функції та її виявлення. Попрацюємо з формулами знаходження похідної із прикладами рішень у висновку. Застосування таблиці похідних та правила диференціювання помітно зменшують час для знаходження похідної.

Основні визначення

Визначення 1

Складною функцією вважається така функція, яка аргумент також є функцією.

Позначається це так: f (g (x)) . Маємо, що функція g(x) вважається аргументом f(g(x)).

Визначення 2

Якщо є функція f і є функцією котангенсу, тоді g(x) = ln x – це функція натурального логарифму. Отримуємо, що складна функція f(g(x)) запишеться як arctg(lnx). Або функція f , що є функцією зведеної в 4 ступінь, де g (x) = x 2 + 2 x - 3 вважається цілою раціональною функцією, отримуємо, що f (g (x)) = (x 2 + 2 x - 3) 4 .

Очевидно, що g(x) може бути складною. З прикладу y = sin 2 x + 1 x 3 - 5 видно, що значення g має кубічний корінь із дробом. Даний вираз можна позначати як y = f (f 1 (f 2 (x))) . Звідки маємо, що f - це функція синуса, а f 1 - функція, що розташовується під квадратним коренем, f 2 (x) = 2 x + 1 x 3 – 5 – дробова раціональна функція.

Визначення 3

Ступінь вкладеності визначено будь-яким натуральним числомі записується як y = f (f 1 (f 2 (f 3 (. . . (f n (x))))))))).

Визначення 4

Поняття композиція функції належить до кількості вкладених функцій за умовою завдання. Для вирішення використовується формула знаходження похідної складної функції виду

(f(g(x))) "=f"(g(x)) · g"(x)

Приклади

Приклад 1

Знайти похідну складної функції виду y = (2 x + 1) 2 .

Рішення

За умовою видно, що f є функцією зведення квадрат, а g (x) = 2 x + 1 вважається лінійною функцією.

Застосуємо формулу похідної для складної функції та запишемо:

f "(g (x)) = ((g (x)) 2)" = 2 · (g (x)) 2 - 1 = 2 · g (x) = 2 · (2 ​​x + 1); g " (x) = (2 x + 1) " = (2 x) " + 1 " = 2 · x " + 0 = 2 · 1 · x 1 - 1 = 2 ⇒ (f (g (x))) "= f "(g (x)) · g "(x) = 2 · (2 ​​x + 1) · 2 = 8 x + 4

Необхідно знайти похідну зі спрощеним вихідним виглядом функції. Отримуємо:

y = (2 x + 1) 2 = 4 x 2 + 4 x + 1

Звідси маємо, що

y " = (4 x 2 + 4 x + 1) " = (4 x 2) " + (4 x) " + 1 " = 4 · (x 2) " + 4 · (x) " + 0 = = 4 · 2 · x 2 - 1 + 4 · 1 · x 1 - 1 = 8 x + 4

Результати збіглися.

При вирішенні завдань такого виду важливо розуміти, де розташовуватиметься функція виду f і g (x) .

Приклад 2

Слід знайти похідні складних функцій виду y = sin 2 x та y = sin x 2 .

Рішення

Перший запис функції свідчить, що f є функцією зведення квадрат, а g (x) – функцією синуса. Тоді отримаємо, що

y " = (sin 2 x) " = 2 · sin 2 - 1 x · (sin x) " = 2 · sin x · cos x

Другий запис показує, що f є функцією синуса, а g(x) = x 2 позначаємо статечну функцію. Звідси випливає, що добуток складної функції запишемо як

y " = (sin x 2) " = cos (x 2) · (x 2) " = cos (x 2) · 2 · x 2 - 1 = 2 · x · cos (x 2)

Формула для похідної y = f (f 1 (f 2 (f 3 (. . . (f n (x)))))))) запишеться як y " = f " (f 1 (f 2 (f 3 (. . .) f n (x)))))) · f 1 "(f 2 (f 3 (. . . (f n (x)))))) · · f 2 " (f 3 (. . . (f n (x))) )) · . . . · f n "(x)

Приклад 3

Знайти похідну функції y = sin (ln 3 a r c t g (2 x)).

Рішення

Даний приклад показує складність запису та визначення розташування функцій. Тоді y = f (f 1 (f 2 (f 3 (f 4 (x)))))) позначимо, де f , f 1 , f 2 , f 3 , f 4 (x) є функцією синуса, функцією зведення в 3 ступінь, функцією з логарифмом та основою е, функцією арктангенсу та лінійною.

З формули визначення складної функції маємо, що

y " = f "(f 1 (f 2 (f 3 (f 4 (x))))) · f 1 "(f 2 (f 3 (f 4 (x))))) · · f 2 " (f 3 (f 4 (x))) · f 3 "(f 4 (x)) · f 4 " (x)

Отримуємо, що слід знайти

  1. f" (f 1 (f 2 (f 3 (f 4 (x))))) як похідна синуса по таблиці похідних, тоді f " (f 1 (f 2 (f 3 (f 4 (x))))) ) = cos (ln 3 a r c t g (2 x)).
  2. f 1 "(f 2 (f 3 (f 4 (x)))) як похідну статечну функцію, тоді f 1 "(f 2 (f 3 (f 4 (x)))) = 3 · ln 3 - 1 a r c t g (2 x) = 3 · ln 2 a r c t g (2 x) .
  3. f 2 "(f 3 (f 4 (x))) як похідна логарифмічна, тоді f 2 "(f 3 (f 4 (x))) = 1 a r c t g (2 x) .
  4. f 3 "(f 4 (x)) як похідний арктангенса, тоді f 3 "(f 4 (x)) = 1 1 + (2 x) 2 = 1 1 + 4 x 2 .
  5. При знаходженні похідної f 4 (x) = 2 x зробити винесення 2 за знак похідної із застосуванням формули похідної статечної функції з показником, що дорівнює 1 тоді f 4 " (x) = (2 x) " = 2 · x " = 2 · 1 · x 1 - 1 = 2 .

Проводимо об'єднання проміжних результатів та отримуємо, що

y " = f "(f 1 (f 2 (f 3 (f 4 (x))))) · f 1 "(f 2 (f 3 (f 4 (x))))) · · f 2 " (f 3 (f 4 (x))) · f 3 "(f 4 (x)) · f 4 " (x) = = cos (ln 3 a r c t g (2 x)) · 3 · ln 2 a r c t g (2 x) · 1 a r c t g (2 x) · 1 1 + 4 x 2 · 2 = = 6 · cos (ln 3 a r c t g (2 x)) · ln 2 a r c t g (2 x) a r c t g (2 x) · (1 + 4 x 2)

Розбір таких функцій нагадує матрьошки. Правила диференціювання не завжди можуть бути застосовані у явному вигляді за допомогою таблиці похідних. Найчастіше потрібно застосовувати формулу знаходження похідних складних функцій.

Існують деякі відмінності складного виду складних функцій. При явному вмінні це розрізняти, знаходження похідних даватиме особливо легко.

Приклад 4

Необхідно розглянути на наведенні такого прикладу. Якщо є функція виду y = t g 2 x + 3 t g x + 1 , тоді її можна розглянути як складний вид g (x) = t g x , f (g) = g 2 + 3 g + 1 . Очевидно, що необхідне застосування формули для складної похідної:

f "(g (x)) = (g 2 (x) + 3 g (x) + 1)" = (g 2 (x)) "+ (3 g (x))" + 1 " = = 2 · g 2 - 1 (x) + 3 · g "(x) + 0 = 2 g (x) + 3 · 1 · g 1 - 1 (x) = = 2 g (x) + 3 = 2 t g x + 3; g "(x) = (t g x)" = 1 cos 2 x ⇒ y " = (f (g (x)))" = f "(g (x)) · g "(x) = (2 t g x + 3 ) · 1 cos 2 x = 2 t g x + 3 cos 2 x

Функція виду y = t g x 2 + 3 t g x + 1 не вважається складною, оскільки має суму t g x 2 3 t g x і 1 . Однак, t g x 2 вважається складною функцією, то отримуємо статечну функцію виду g (x) = x 2 і f є функцією тангенса. Для цього слід продиференціювати за сумою. Отримуємо, що

y " = (t g x 2 + 3 t g x + 1) " = (t g x 2) " + (3 t g x) " + 1 " = = (t g x 2) " + 3 · (t g x) " + 0 = (t g x 2) " + 3 cos 2 x

Переходимо до знаходження похідної складної функції (t g x 2) " :

f "(g (x)) = (t g (g (x)))" = 1 cos 2 g (x) = 1 cos 2 (x 2) g "(x) = (x 2)" = 2 · x 2 - 1 = 2 x ⇒ (t g x 2) "= f "(g (x)) · g "(x) = 2 x cos 2 (x 2)

Отримуємо, що y " = (t g x 2 + 3 t g x + 1) " = (t g x 2) " + 3 cos 2 x = 2 x cos 2 (x 2) + 3 cos 2 x

Функції складного виду можуть бути включені до складу складних функцій, причому самі складні функції можуть бути складовими складного функції.

Приклад 5

Наприклад розглянемо складну функцію виду y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 + ln 2 x · (x 2 + 1)

Ця функція може бути представлена ​​у вигляді y = f (g (x)) , де значення f є функцією логарифму на підставі 3 , а g (x) вважається сумою двох функцій виду h (x) = x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 і k(x) = ln 2 x · (x 2 + 1) . Очевидно, що y = f(h(x) + k(x)) .

Розглянемо функцію h(x) . Це відношення l(x) = x 2 + 3 cos 3 (2 x + 1) + 7 к m (x) = e x 2 + 3 3

Маємо, що l(x) = x 2 + 3 cos 2 (2 x + 1) + 7 = n(x) + p(x) є сумою двох функцій n(x) = x 2 + 7 та p(x) = 3 cos 3 (2 x + 1) , де p (x) = 3 · p 1 (p 2 (p 3 (x))) є складною функцією з числовим коефіцієнтом 3 а p 1 - функцією зведення в куб, p 2 функцією косинуса, p 3 (x) = 2 x + 1 – лінійною функцією.

Отримали, що m (x) = e x 2 + 3 3 = q (x) + r (x) є сумою двох функцій q (x) = e x 2 і r (x) = 3 3 де q (x) = q 1 (q 2 (x)) – складна функція, q 1 – функція з експонентою, q 2 (x) = x 2 – статечна функція.

Звідси видно, що h (x) = l (x) m (x) = n (x) + p (x) q (x) + r (x) = n (x) + 3 · p 1 (p 2 ( p 3 (x))) q 1 (q 2 (x)) + r (x)

При переході до виразу виду k(x) = ln 2 x · (x 2 + 1) = s (x) · t (x) видно, що функція представлена ​​у вигляді складної s(x) = ln 2 x = s 1 ( s 2 (x)) з цілою раціональною t (x) = x 2 + 1 , де s 1 є функцією зведення в квадрат, а s 2 (x) = ln x - логарифмічної з основою е.

Звідси випливає, що вираз набуде вигляду k (x) = s (x) · t (x) = s 1 (s 2 (x)) · t (x) .

Тоді отримаємо, що

y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 + ln 2 x · (x 2 + 1) = = f n (x) + 3 · p 1 (p 2 (p 3 (x))) q 1 (q 2 (x)) = r (x) + s 1 (s 2 (x)) · t (x)

За структурами функції стало явно, як і які формули необхідно застосовувати для спрощення вираження за його диференціювання. Для ознайомлення подібних завдань і для поняття їх вирішення необхідно звернутися до пункту диференціювання функції, тобто знаходження її похідної.

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter

Висновок формули похідної статечної функції (x у ступені a). Розглянуто похідні від коренів із x. Формула похідної статечної функції вищого порядку. Приклади обчислення похідних.

Зміст

Див. також: Ступінна функція та коріння, формули та графік
Графіки статечної функції

Основні формули

Похідна від x у ступені a дорівнює a , помноженому на x у ступені a мінус один:
(1) .

Похідна від кореня ступеня n з x до ступеня m дорівнює:
(2) .

Висновок формули похідної статечної функції

Випадок x > 0

Розглянемо статечну функцію від змінної x з показником ступеня a:
(3) .
Тут a є довільним дійсним числом. Спочатку розглянемо випадок.

Щоб знайти похідну функції (3), скористаємось властивостями статечної функції та перетворюємо її до наступного виду:
.

Тепер знаходимо похідну, застосовуючи:
;
.
Тут.

Формулу (1) доведено.

Висновок формули похідної від кореня ступеня n з x до ступеня m

Тепер розглянемо функцію, що є коренем такого виду:
(4) .

Щоб знайти похідну, перетворимо корінь до статечної функції:
.
Порівнюючи з формулою (3) бачимо, що
.
Тоді
.

За формулою (1) знаходимо похідну:
(1) ;
;
(2) .

Насправді немає необхідності запам'ятовувати формулу (2). Набагато зручніше спочатку перетворити коріння до статечних функцій, а потім знаходити їх похідні, застосовуючи формулу (1) (див. приклади наприкінці сторінки).

Випадок x = 0

Якщо , то статечна функція визначена при значенні змінної x = 0 . Знайдемо похідну функції (3) при x = 0 . Для цього скористаємося визначенням похідної:
.

Підставимо x = 0 :
.
При цьому під похідною ми розуміємо правосторонню межу, для якої .

Отже, ми знайшли:
.
Звідси видно, що з , .
При , .
При , .
Цей результат виходить і за формулою (1):
(1) .
Тому формула (1) справедлива і за x = 0 .

Випадок x< 0

Знову розглянемо функцію (3):
(3) .
При деяких значеннях постійної a вона визначена і при негативних значеннях змінної x . А саме, хай буде раціональним числом. Тоді його можна подати у вигляді нескоротного дробу:
,
де m і n – цілі числа, які не мають спільного дільника.

Якщо n непарне, то статечна функція визначена при негативних значеннях змінної x . Наприклад, при n = 3 та m = 1 ми маємо кубічний корінь з x :
.
Він і при негативних значеннях змінної x .

Знайдемо похідну статечної функції (3) при і при раціональних значеннях постійної a для яких вона визначена. Для цього представимо x у наступному вигляді:
.
Тоді ,
.
Знаходимо похідну, виносячи постійну за знак похідної та застосовуючи правило диференціювання складної функції:

.
Тут. Але
.
Оскільки , то
.
Тоді
.
Тобто формула (1) справедлива і при:
(1) .

Похідні вищих порядків

Тепер знайдемо похідні вищих порядків від статечної функції
(3) .
Похідну першого порядку ми вже знайшли:
.

Виносячи постійну a за знак похідної, знаходимо похідну другого порядку:
.
Аналогічним чином знаходимо похідні третього та четвертого порядків:
;

.

Звідси видно, що похідна довільного n-го порядкумає такий вигляд:
.

Зауважимо, що якщо a є натуральним числом, то n -я похідна є постійною:
.
Тоді всі наступні похідні дорівнюють нулю:
,
при .

Приклади обчислення похідних

приклад

Знайдіть похідну функції:
.

Перетворюємо коріння до ступенів:
;
.
Тоді вихідна функція набуває вигляду:
.

Знаходимо похідні ступенів:
;
.
Похідна постійної дорівнює нулю:
.